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1 Introduction

The recent developments of internet applications are showing new paradigms
of interactions among users and between users and available contents. In sev-
eral social applications such as Twitter, Wikipedia or Facebook the paradigm
of contents creation and filtering follows a bottom up process in which contents
emerge by the users “local” interactions. In this paper we focus on the problem
of reaching consensus in a majority-based distributed system, i.e. achieving a
global agreement by means of local interactions. The link between consensus
and majority rules has been extensively treated in several works such as [4], [5],
[2],[6] and [3]. In the latter the authors studied the propagation of a faulty be-
havior started by well placed faulty elements. The process can be described as
a vertex-coloring game on graphs where the vertices are colored black (faulty)
or white (non-faulty), and change their color at each round on the basis of the
colors of their neighbors. We have defined and studied distributed algorithms
for consensus where multicolored entities change their color on the basis of the
neighboring vertices. In the first work [1] the nodes assuming directly the color
of the neighbors were defined “persuadable”, while in this paper we present a
protocol of “stubborn” entities in which the set of colors is ordered and the enti-
ties update their color by partially incrementing their color toward the color held
by their neighbors. In a socio-cognitive context of opinion sharing an entity can
change one’s mind under the influence of the opinion of the (simple) majority of
the others (neighbors). Here we study the initial distribution of colors producing
a monochromatic configuration within a finite time.

2 Notation and Definitions

We study the interaction of stubborn entities in a specific topology of the system:

Definition 1. A toroidal mesh T : (V,E) of m × n vertices is a mesh where
each vertex vi,j ( 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1) is connected to the four
vertices v(i−1) mod m,j , v(i+1) mod m,j , vi,(j−1) mod n and vi,(j+1) mod n.

Let C = {1, . . . , k} be a finite set of colors. A coloring of a torus T is a
function r : V → C. A bi-colored torus is a coloring of T that uses two
colors and a multi-colored torus is a coloring of T that uses more than two
colors. Let N(x) denote the neighborhood of any vertex x in V ; we have that
|N(x)| = 4. Given a coloring r of V , we can define the following irreversible
simple rule (StubSM-Protocol):



for all x ∈ T do
let a, b, c, d ∈ N(x)
if (r(a) = r(b) > r(x)) ∧ ((r(c) 6= r(d)) ∨ (r(c) = r(d) > r(x))) then
r(x)← r(x) + 1

We denote the subset of T of all k-colored vertices by Sk, and the set of its
k-colored vertices by V k (k ∈ C). The recoloring process represents the dynamics
of the system. Depending on the initial coloring of T , we get different dynam-
ics. Among the possible initial configurations (i.e. assignments of colors) we are
interested in those leading to a monochromatic coloring, so called dynamos.
Formally,

Definition 2. The set Sk is a dynamo if an all k-color configuration is reached
from Sk in a finite number of steps under the StubSM-Protocol.

Finally we need to introduce the following definitions.

Definition 3. A k-block Bk is a connected subset of T made up of vertices of
the same color k each of which has at least two neighbors in Bk.

Note that vertices in Bk will never change their color. For example, Bk can be
a k-colored column (row), any 2× 2 submatrix of consecutive rows and columns
that we call a window, or any k-colored cycle such that vi,j , vi,j+1, . . . , vi,j′ ,
vi−1,j′ , . . . , vi′,j′ , vi′,j′−1, . . . vi′,j , vi′+1,j , . . . vi,j that we call a frame.

Definition 4. A non-k-block NBk is a connected subset of T made up of
vertices of colors in C \ {k} each of which has at least three neighbors in
NBk.

This definition implies that every vertex in NBk has at most one k-colored
neighbor, namely, vertices in NBk will never recolor by k color. For example, two
consecutive rows or columns of vertices not colored by k constitute a non-k-block
in a toroidal mesh.

3 Bounds to the size of a dynamo

In this paper, we are interested in determining the minimum size dynamo under
the StubSM-Protocol for a multi-colored toroidal mesh. This is obtained by
first computing a lower bound to the size and then an upper bound close to
the lower bound. These bounds can be derived by a reduction to the bi-colored
case. We define a polynomial time transformation φ : C → C such that φ(i) = 1,
for i = 1, . . . , k − 1, and φ(k) = 2. This transformation allows us to map a
multi-colored torus into a bi-colored torus (where 1 and 2 correspond to colors
white and black, respectively). Moreover under transformation φ, a non-k-block
corresponds to a simple white block of [3].

Proposition 1. A lower bound to the size of a dynamo in a bi-colored torus
under the (reversible) simple majority rule is a lower bound to the size of a
dynamo in a multi-colored torus under the StubSM-Protocol.



Indeed a lower bound consists in the smallest size of S2 (initial set of black
vertices) such that no simple white blocks can arise in the first problem, and in
the smallest size of Sk such that no non-k-blocks can arise in the second problem.
Because of the correspondence between a non-k-block and a simple white block
the claim follows. Therefore we derive (see Theorem 9 of [3]):

Theorem 1. Let Sk be a dynamo for a colored toroidal mesh of size m×n. We
have

– (i) mSk ≥ m− 1, nSk ≥ n− 1
– (ii) |Sk| ≥ m+ n− 2.

Proposition 2. An upper bound to the size of a dynamo in a bi-colored torus
under the (irreversible) strong majority rule is an upper bound to the size of a
dynamo in a multi-colored torus under the StubSM-Protocol.

Indeed in order to establish an upper bound to the size of S2, no strong white
blocks of [3] have to arise and the successive derived black sets of vertices have to
contain the set V of all the vertices at the end of the process, in the first problem.
Similarly, to obtain an upper bound to the size of Sk, no i-blocks have to arise and
successive derived k-colored sets of vertices have to contain the set V of all the
vertices at the end of the process, in the second problem. We have that: a) strong
white blocks correspond to i-blocks; b) irreversible strong majority rule is more
restrictive than StubSM-Protocol: indeed, under irreversible strong majority
rule, a vertex recolors itself if there are three vertices in its neighborhood having
the same color, whereas under the StubSM-Protocol two neighbors with the
same color are requested (and the others with different colors). Because of a)
and b) the claim follows. Therefore we get (see Theorem 8 of [3]):

Theorem 2. Let Sk be a dynamo for a colored toroidal mesh of size m × n.
Then |Sk| ≥ dm/3e(n+ 1).

4 A minimum size dynamo

Theorem 2 establishes an upper bound far from the lower bound determined in
Theorem 1. In this section we derive a dynamo of minimum size.

Lemma 1. Let Sk be a dynamo. Then, T − Sk does not contain any h-block,
with h ∈ C \ {k}.
Let Sk be made up of the first row and column in the torus. Then |Sk| = m+n−1
that is close to the lower bound in Theorem 1. In this case, no h-colored column
or h-colored row can arise, but this does not hold for h-colored window or a
h-colored frame, with h ∈ C \ {k}. As a consequence we require that for every
2 × 2 window in T , r(vi,j) 6= r(vi+1,j+1) and r(vi,j+1) 6= r(vi+1,j); otherwise
r(vi,j) = r(vi+1,j+1) = k (r(vi,j+1) = r(vi+1,j) = k). This requirement does not
forbid that during the recoloring process a h − block can appear as Figure 1
illustrates.

The following theorem considers the consequences of the recoloring dynamic
that can produce a certain h-block.



8 8 8 8 8 8 99K 8 8 8 8 8 8
8 7 7 3 4 6 99K 8 8 8 6 7 8
8 1 4 3 7 5 99K 8 5 4 4 7 8
8 1 4 3 2 4 99K 8 1 4 4 2 7
8 1 4 3 2 4 99K 8 6 4 3 3 8

Fig. 1. An Example in which a block emerges after five steps.

6 6 6 6 6 7 7 7 7 7
6 5 5 5 5 7 6 6 6 6
6 4 4 4 4 7 5 5 5 5
6 1 1 1 1 7 1 1 1 1
6 3 3 3 3 7 6 6 6 6
6 5 5 5 5

Fig. 2. Two examples of dynamos when m is even and odd, respectively.

Theorem 3. Let aW , bW , cW , dW be the vertices of any 2 × 2 window with
r(aW ) ≤ r(bW ) ≤ r(cW ) ≤ r(dW ) and i and j be the number of recoloring of
aW and dW , respectively under the StubSM-Protocol. No h-block can appear
if i− j < r(dW )− r(aW ), with h ∈ C \ {k}.

By this theorem and considerations about the recoloring pattern due to the
choice of Sk, we can derive an initial distribution of the remaining colors leading
to the k monochromatic configuration. Due to space limit in Figure 2 we only
give two examples of dynamos when m is even and odd, respectively.
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